Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 131, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229301

RESUMO

A novel aspartic protease gene (TaproA1) from Trichoderma asperellum was successfully expressed in Komagataella phaffii (Pichia pastoris). TaproA1 showed 52.8% amino acid sequence identity with the aspartic protease PEP3 from Coccidioides posadasii C735. TaproA1 was efficiently produced in a 5 L fermenter with a protease activity of 4092 U/mL. It exhibited optimal reaction conditions at pH 3.0 and 50 °C and was stable within pH 3.0-6.0 and at temperatures up to 45 °C. The protease exhibited broad substrate specificity with high hydrolysis activity towards myoglobin and hemoglobin. Furthermore, duck blood proteins (hemoglobin and plasma protein) were hydrolyzed by TaproA1 to prepare bioactive peptides with high ACE inhibitory activity. The IC50 values of hemoglobin and plasma protein hydrolysates from duck blood proteins were 0.105 mg/mL and 0.091 mg/mL, respectively. Thus, the high yield and excellent biochemical characterization of TaproA1 presented here make it a potential candidate for the preparation of duck blood peptides. KEY POINTS: • An aspartic protease (TaproA1) from Trichoderma asperellum was expressed in Komagataella phaffii. • TaproA1 exhibited broad substrate specificity and the highest activity towards myoglobin and hemoglobin. • TaproA1 has great potential for the preparation of bioactive peptides from duck blood proteins.


Assuntos
Ácido Aspártico Proteases , Hypocreales , Saccharomycetales , Trichoderma , Animais , Proteínas Fúngicas/metabolismo , Patos , Mioglobina , Peptídeos , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Proteínas Sanguíneas , Hemoglobinas , Trichoderma/genética
2.
Fungal Biol ; 127(10-11): 1415-1425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37993253

RESUMO

Amylomyces rouxii is a zygomycete that produces extracellular protease and tyrosinase. The tyrosinase activity is negatively regulated by the proteases and, which attempts to purify the tyrosinase (tyr) enzyme that has been hampered by the presence of a protease that co-purified with it. In this work we identified genes encoding aspartic protease II (aspII) and VI of A. rouxii. Using an RNAi strategy based on the generation of a siRNA by transcription from two opposite-orientated promoters, the expression of these two proteases was silenced, showing that this molecular tool is suitable for gene silencing in Amylomyces. The transformant strains showed a significant attenuation of the transcripts (determined by RT-qPCR), with respective inhibition of the protease activity. In the case of aspII, inhibition was in the range of 43-90 % in different transformants, which correlated well with up to a five-fold increase in tyr activity with respect to the wild type and control strains. In contrast, silencing of aspVI caused a 43-65 % decrease in protease activity but had no significant effect on the tyr activity. The results show that aspII has a negative effect on tyr activity, and that the silencing of this protease is important to obtain strains with high levels of tyr activity.


Assuntos
Ácido Aspártico Proteases , Mucorales , RNA Interferente Pequeno , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Mucorales/genética
3.
Front Cell Infect Microbiol ; 13: 1257897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780854

RESUMO

The surge of multidrug-resistant fungal pathogens, especially Candida auris, poses significant threats to global public health. Candida auris exhibits resistance to multiple antifungal drugs, leading to major outbreaks and a high mortality rate. With an urgent call for innovative therapeutic strategies, this study focused on the regulation and pathobiological significance of secreted aspartyl proteinases (SAPs) in C. auris, as these enzymes play pivotal roles in the virulence of some fungal species. We delved into the Ras/cAMP/PKA signaling pathway's influence on SAP activity in C. auris. Our findings underscored that the Ras/cAMP/PKA pathway significantly modulates SAP activity, with PKA catalytic subunits, Tpk1 and Tpk2, playing a key role. We identified a divergence in the SAPs of C. auris compared to Candida albicans, emphasizing the variation between Candida species. Among seven identified secreted aspartyl proteases in C. auris (Sapa1 to Sapa7), Sapa3 emerged as the primary SAP in the pathogen. Deletion of Sapa3 led to a significant decline in SAP activity. Furthermore, we have established the involvement of Sapa3 in the biofilm formation of C. auris. Notably, Sapa3 was primarily regulated by Tpk1 and Tpk2. Deletion of SAPA3 significantly reduced C. auris virulence, underscoring its pivotal role in C. auris pathogenicity. The outcomes of this study provide valuable insights into potential therapeutic targets, laying the groundwork for future interventions against C. auris infection.


Assuntos
Ácido Aspártico Proteases , Candida auris , Virulência , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Candida/genética , Candida albicans , Antifúngicos/farmacologia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo
4.
Future Microbiol ; 18: 295-309, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37097060

RESUMO

Secreted aspartyl proteases (SAPs) are important enzymes for fungal pathogenicity, playing a significant role in infection and survival. This article provides insight into how SAPs facilitate the transformation of yeast cells into hyphae and engage in biofilm formation, invasion and degradation of host cells and proteins. SAPs and their isoenzymes are prevalent during fungal infections, making them a potential target for antifungal and antibiofilm therapies. By targeting SAPs, critical stages of fungal pathogenesis such as adhesion, hyphal development, biofilm formation, host invasion and immune evasion can potentially be disrupted. Developing therapies that target SAPs could provide an effective treatment option for a wide range of fungal infections.


SAPs are enzymes that are important for fungi to cause infections and survive in the host body. This article explains how SAP helps fungi to change their morphology and form a protective layer called a biofilm. SAP also helps fungi invade host cells and break down proteins. Because SAP is present in every stage of fungal infections, it could be a target for new medicines that fight fungal infections and biofilms. By targeting SAP, scientists could stop fungi from adhering to the host, growing into long hyphae, forming biofilms, invading host cells and evading the host immune system. If scientists can develop treatments that target SAP, they may be able to treat a variety of fungal infections more effectively.


Assuntos
Ácido Aspártico Proteases , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Candida albicans/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Virulência , Biofilmes
5.
Yeast ; 40(2): 102-116, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36562128

RESUMO

Ustilago maydis expresses a number of proteases during its pathogenic lifecycle. Some of the proteases including both intracellular and extracellular ones have previously been shown to influence the virulence of the pathogen. However, any role of secreted proteases in the sporulation process of U. maydis have not been explored earlier. In this study we have investigated the biological function of one such secreted protease, Ger1 belonging to aspartic protease A1 family. An assessment of the real time expression of ger1 revealed an infection specific expression of the protein especially during late phases of infection. We also evaluated any contribution of the protein in the pathogenicity of the fungus. Our data revealed an involvement of Ger1 in the sporulation and spore germination processes of U. maydis. Ger1 also showed positive influence on the pathogenicity of the fungus and accordingly the ger1 deletion mutant exhibited reduced pathogenicity. The study also demonstrated the protease activity associated with Ger1 to be essential for its biological function. Fluorescence microscopy of maize plants infected with U. maydis cells expressing Ger1-mcherry-HA also revealed that Ger1 is efficiently secreted within maize apoplast.


Assuntos
Ácido Aspártico Proteases , Basidiomycota , Ustilago , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Ustilago/genética , Ustilago/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporos/metabolismo
6.
Int J Biol Macromol ; 228: 333-345, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565834

RESUMO

Proteases are a major virulence factor in pathogenic fungi and can serve as a potential therapeutic target. The interaction of gallic acid (GA) with Aspartic fungal protease (PepA) was investigated using biophysical and in silico approaches. UV-Vis and fluorescence spectroscopy showed complex formation and static quenching of PepA by GA with Ka of 7.4 × 105 M-1 and stoichiometric binding site (n) of 1.67. CD-spectroscopy showed marked changes in helical content and synchronous fluorescence spectra measurements indicated significant changes in the microenvironment around tryptophan residues in the GA-PepA complex. Outcomes of Isothermal Titration Calorimetry (ITC) measurement and molecular modelling studies validated the spectroscopic results. The binding of GA to Human Serum albumin (HSA) was moderate (Ka = 1.9 × 103 M-1) and did not cause structural disruption of HSA. To conclude, gallic acid is strongly bound to fungal protease leading to structural disruption and inhibition whereas HSA structure was largely conserved. Gallic acid thus appears to be a potential therapeutic agent against fungal proteases.


Assuntos
Ácido Aspártico Proteases , Albumina Sérica Humana , Humanos , Simulação de Acoplamento Molecular , Termodinâmica , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Sítios de Ligação , Ligação Proteica , Ácido Aspártico Proteases/metabolismo , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Dicroísmo Circular
7.
Microbiol Spectr ; 10(6): e0207922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445092

RESUMO

The endoplasmic reticulum-plasma membrane (ER-PM) contacts are one kind of important membrane contact structures in eukaryotic cells, which mediate material and message exchange between the ER and the PM. However, the specific types and functions of ER-PM tethering proteins are poorly understood in the human fungal pathogen Candida albicans. In this study, we observed that the two tricalbin-family proteins, i.e., Tcb1 and Tcb3, were colocalized with the ER-PM contacts in C. albicans. Deletion of the tricalbin-encoding genes TCB1 and TCB3 remarkably reduced ER-PM contacts, suggesting that tricalbins are ER-PM tethering proteins of C. albicans. Stress sensitivity assays showed that the TCB-deleted strains, including tcb1Δ/Δ, tcb3Δ/Δ, and tcb1Δ/Δ tcb3Δ/Δ, exhibited hypersensitivity to cell wall stress induced by caspofungin. Further investigation revealed that caspofungin induced drastic reactive oxygen species (ROS) accumulation in the mutants, which was attributed to enhanced oxidation of Ero1 in the ER lumen. Removal of intracellular ROS by the ROS scavenger vitamin C rescued the growth of the mutants under caspofungin treatment, indicating that Ero1 oxidation-related ROS accumulation was involved in caspofungin hypersensitivity of the mutants. Moreover, deletion of the TCB genes decreased secretion of extracellular aspartyl proteinases, reduced transport of the cell wall protein Hwp1 from the cytoplasm to the cell wall, and attenuated virulence of the fungal pathogen. This study sheds a light on the role of ER-PM tethering proteins in maintenance of cell wall integrity and virulence in fungal pathogens. IMPORTANCE The endoplasmic reticulum-plasma membrane contacts are important membrane contact structures in eukaryotic cells, functioning in material and message exchange between the ER and the PM. We observed that the two tricalbin-family endoplasmic reticulum-plasma membrane contact proteins are required for tolerance to caspofungin-induced cell wall stress in the pathogenic fungus Candida albicans. The tricalbin mutants exhibited hypersensitivity to cell wall stress induced by caspofungin. Further investigation revealed that Ero1 oxidation-related reactive species oxygen accumulation was involved in caspofungin hypersensitivity of the tricalbin mutants. Moreover, loss of tricalbins reduced secretion of extracellular aspartyl proteinases, decreased transport of the cell wall proteins from the cytoplasm to the cell wall, and attenuated virulence of the fungal pathogen. This study uncovers the role of ER-PM tethering proteins in sustaining protein secretion, maintenance of cell wall integrity and virulence in fungal pathogens.


Assuntos
Ácido Aspártico Proteases , Candida albicans , Ácido Aspártico Proteases/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Caspofungina/farmacologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Mol Microbiol ; 118(6): 601-622, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36210525

RESUMO

Virulence and persistence of the obligate intracellular parasite Toxoplasma gondii involve the secretion of effector proteins belonging to the family of dense granule proteins (GRAs) that act notably as modulators of the host defense mechanisms and participate in cyst wall formation. The subset of GRAs residing in the parasitophorous vacuole (PV) or exported into the host cell, undergo proteolytic cleavage in the Golgi upon the action of the aspartyl protease 5 (ASP5). In tachyzoites, ASP5 substrates play central roles in the morphology of the PV and the export of effectors across the translocon complex MYR1/2/3. Here, we used N-terminal amine isotopic labeling of substrates to identify novel ASP5 cleavage products by comparing the N-terminome of wild-type and Δasp5 lines in tachyzoites and bradyzoites. Validated substrates reside within the PV or PVM in an ASP5-dependent manner. Remarkably, Δasp5 bradyzoites are impaired in the formation of the cyst wall in vitro and exhibit a considerably reduced cyst burden in chronically infected animals. More specifically two-photon serial tomography of infected mouse brains revealed a comparatively reduced number and size of the cysts throughout the establishment of persistence in the absence of ASP5.


Assuntos
Ácido Aspártico Proteases , Toxoplasma , Animais , Camundongos , Toxoplasma/metabolismo , Ácido Aspártico Proteases/metabolismo , Proteínas de Protozoários/metabolismo , Infecção Persistente , Vacúolos/metabolismo , Ácido Aspártico Endopeptidases/metabolismo
9.
Immunobiology ; 227(6): 152263, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36063565

RESUMO

Candida tropicalisis an opportunistic fungal pathogen and is one of the most frequently isolated non-albicans species. It can cause localised as well as invasive systemic infections particularly in immunocompromised patients. Increased resistance to common anti-fungal drugs is an emerging problem. In order to establish disseminated infections, Candida has evolved several strategies to escape the host immune system. A detailed understanding of how C. tropicalis escapes the host immune attack is needed as it can help develop novel anti-fungal therapies. Secreted aspartyl proteinases (Saps) of C. albicans have been shown to be determinants of virulence and immune evasion. However, the immune evasion properties of C. tropicalis Saps have been poorly characterised. This study investigated the immune evasion properties of C. tropicalis secreted aspartic protease 1 (Sapt1).Sapt1 was recombinantly produced using a Kluyveromyces lactis yeast expression system. A range of complement proteins and immunogloublins were screened to test if Sapt1 had any proteolytic activity. Sapt1 efficiently cleaved human mannose-binding lectin (MBL) and collectin-11, which are the initiating molecules of the lectin pathway of the complement system, but not l-ficolin. In addition, Sapt1 cleaved DC-SIGN, the receptor on antigen presenting dendritic cells. Proteolysis was prominent in acidic condition (pH 5.2), a characteristic of aspartyl protease. No proteolytic activity was detected against complement proteins C1q, C3, C3b, IgG and IgA. In view of the ability of Sapt1 to cleave MBL and collectin-11, we found that Sapt1 could prevent activation of the complement lectin pathway. RT-qPCR analysis using three different C. tropicalis clinical isolates (oral, blood and peritoneal dialysis fluid) revealed relatively higher levels of mRNA expression of Sapt1 gene when compared to a reference strain; Sapt1 protein was found to be secreted by all the tested strains. Lectin pathway and its initiating components are crucial to provide front line defence against Candida infections. For the first time, we have shown that a Candida protease can proteolytically degrade the key initiating components of lectin pathway and inhibit complement activation. Findings from this study highlight the importance of exploring Sapt1 as a potential therapeutic target. We conclude that C. tropicalis secretes Sapt1 to target the complement lectin pathway, a key pattern recognition and clearance mechanism, for its survival and pathogenesis.


Assuntos
Ácido Aspártico Proteases , Lectina de Ligação a Manose , Humanos , Candida tropicalis/metabolismo , Lectina de Ligação a Manose da Via do Complemento , Lectina de Ligação a Manose/metabolismo , Candida albicans/fisiologia , Candida , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Lectinas/metabolismo , Proteínas do Sistema Complemento/metabolismo
10.
Methods Mol Biol ; 2447: 21-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583770

RESUMO

Aspartic proteases (APs) are widely distributed in plants. The large majority of genes encoding putative APs exhibit distinct features when compared with the so-called typical APs, and have been grouped as atypical and nucellin-like APs. Remarkably, a diverse pattern of enzymatic properties, subcellular localizations, and biological functions are emerging for these proteases, illustrating the functional complexity among plant pepsin-like proteases. However, many key questions regarding the structure-function relationships of plant APs remain unanswered. Therefore, the expression of these enzymes in heterologous systems is a valuable strategy to unfold the unique features/biochemical properties among members of this family of proteases. Here, we describe our protocol for the production and purification of recombinant plant APs, using a procedure where the protein is refolded from inclusion bodies by dialysis. This method allows the production of untagged versions of the target protease, which has revealed to be critical to disclose differences in processing/activation requirements between plant APs. The protocol includes protein expression, washing and solubilization of inclusion bodies, refolding by dialysis, and a protein purification method. Specific considerations on critical aspects of the refolding process and further suggestions for evaluation of the final recombinant product are also provided.


Assuntos
Ácido Aspártico Proteases , Escherichia coli , Ácido Aspártico Proteases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Plantas/metabolismo , Redobramento de Proteína , Proteínas Recombinantes/metabolismo , Diálise Renal
11.
Cell Death Dis ; 13(5): 475, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589686

RESUMO

Proteasome inhibitors, such as bortezomib, are first-line therapy against multiple myeloma (MM). Unfortunately, patients frequently become refractory to this treatment. The transcription factor NRF1 has been proposed to initiate an adaptation program that regulates proteasome levels. In the context of proteasome inhibition, the cytosolic protease DDI2 cleaves NRF1 to release an active fragment that translocates to the nucleus to promote the transcription of new proteasome subunits. However, the contribution of the DDI2-NRF1 pathway to bortezomib resistance is poorly understood. Here we show that upon prolonged bortezomib treatment, MM cells become resistant to proteasome inhibition by increasing the expression of DDI2 and consequently activation of NRF1. Furthermore, we found that many MM cells became more sensitive to proteasome impairment in the context of DDI2 deficiency. Mechanistically, we demonstrate that both the protease and the HDD domains of DDI2 are required to activate NRF1. Finally, we show that partial inhibition of the DDI2-protease domain with the antiviral drug nelfinavir increased bortezomib susceptibility in treated MM cells. Altogether, these findings define the DDI2-NRF1 pathway as an essential program contributing to proteasome inhibition responses and identifying DDI2 domains that could be targets of interest in bortezomib-treated MM patients.


Assuntos
Antineoplásicos , Ácido Aspártico Proteases , Mieloma Múltiplo , Antineoplásicos/uso terapêutico , Ácido Aspártico Endopeptidases , Ácido Aspártico Proteases/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico
12.
Braz J Microbiol ; 53(3): 1599-1611, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35411453

RESUMO

Aspergillus awamori was cultivated in a modified Breccia medium, and the extracellular fraction was obtained, which presented 260 ± 15 µg of protein/mg and specific protease activity of 3.87 ± 0.52 mM.min-1.mg of protein-1 using Nα-p-tosyl-L-arginine methyl ester hydrochloride (L-TAME) as substrate. This fraction showed major proteins about 104 and 44 kDa and maximal protease activity at pH 5.5, 6.5, and 9.0, suggesting that A. awamori secretes acidic, neutral, and alkaline proteases with expressive thermal stability, however, aspartic protease was the most important activity. When yeast extract was supplemented to a modified Breccia medium, A. awamori protein secretion and protease activity were maximal and the affinity chromatography on pepstatin-agarose was employed to isolate the aspartic protease activity, which was called ASPA, with approximately 75 kDa. ASPA maximal activity was obtained at pH 4.5 and 6.5, and 50 °C. Pepstatin inhibited about 80% of ASPA activity, with IC50 and Ki values of 0.154 and 0.072 µM, respectively. ASPA cleaved protein and peptides substrates with the highest activity against gelatin (95 U/mg) and good peptidase activity with KM 0.0589 mM and Vmax 1.909 mM.min-1.mg protein-1, using L-TAME as substrate. A. awamori extracellular fraction is a source of proteases with important activity, and the supplementation of modified Breccia medium increased the aspartic protease production. This enzyme presented different biochemical characteristics from the previously reported A. awamori aspartic proteases. Therefore, ASPA is an excellent candidate for biotechnological application due to its important activity and thermostability.


Assuntos
Ácido Aspártico Proteases , Ácido Aspártico Proteases/química , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Aspergillus/metabolismo , Concentração de Íons de Hidrogênio , Pepstatinas/metabolismo , Peptídeo Hidrolases
13.
J Sci Food Agric ; 102(12): 5190-5199, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35289936

RESUMO

BACKGROUND: Various neutral and alkaline peptidases are commercially available for use in protein hydrolysis under neutral to alkaline conditions. However, the hydrolysis of proteins under acidic conditions by applying fungal aspartic peptidases (FAPs) has not been investigated in depth so far. The aim of this study, thus, was to purify a FAP from the commercial enzyme preparation, ROHALASE® BXL, determine its biochemical characteristics, and investigate its application for the hydrolysis of food and animal feed proteins under acidic conditions. RESULTS: A Trichoderma reesei derived FAP, with an apparent molecular mass of 45.8 kDa (sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SDS-PAGE) was purified 13.8-fold with a yield of 37% from ROHALASE® BXL. The FAP was identified as an aspartate protease (UniProt ID: G0R8T0) by inhibition and nano-LC-ESI-MS/MS studies. The FAP showed the highest activity at 50°C and pH 4.0. Monovalent cations, organic solvents, and reducing agents were tolerated well by the FAP. The FAP underwent an apparent competitive product inhibition by soy protein hydrolysate and whey protein hydrolysate with apparent Ki -values of 1.75 and 30.2 mg*mL-1 , respectively. The FAP showed promising results in food (soy protein isolate and whey protein isolate) and animal feed protein hydrolyses. For the latter, an increase in the soluble protein content of 109% was noted after 30 min. CONCLUSION: Our results demonstrate the applicability of fungal aspartic endopeptidases in the food and animal feed industry. Efficient protein hydrolysis of industrially relevant substrates such as acidic whey or animal feed proteins could be conducted by applying fungal aspartic peptidases. © 2022 Society of Chemical Industry.


Assuntos
Ácido Aspártico Proteases , Trichoderma , Ração Animal , Animais , Ácido Aspártico Proteases/metabolismo , Hidrólise , Hypocreales , Hidrolisados de Proteína/química , Proteínas de Soja/metabolismo , Espectrometria de Massas em Tandem
14.
Cells ; 11(3)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159253

RESUMO

In this contribution, we report on the possibility that cryptococcal protease(s) could activate the SARS-CoV-2 spike (S) protein. The S protein is documented to have a unique four-amino-acid sequence (underlined, SPRRAR↓S) at the interface between the S1 and S2 sites, that serves as a cleavage site for the human protease, furin. We compared the biochemical efficiency of cryptococcal protease(s) and furin to mediate the proteolytic cleavage of the S1/S2 site in a fluorogenic peptide. We show that cryptococcal protease(s) processes this site in a manner comparable to the efficiency of furin (p > 0.581). We conclude the paper by discussing the impact of these findings in the context of a SARS-CoV-2 disease manifesting while there is an underlying cryptococcal infection.


Assuntos
Ácido Aspártico Proteases/metabolismo , Proteínas de Bactérias/metabolismo , Cryptococcus neoformans/enzimologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Ácido Aspártico Proteases/genética , Proteínas de Bactérias/genética , Sítios de Ligação , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Cryptococcus neoformans/genética , Corantes Fluorescentes/química , Furina/genética , Furina/metabolismo , Humanos , Pandemias , Peptídeos/química , Peptídeos/metabolismo , Proteólise , SARS-CoV-2/fisiologia
15.
J Biol Chem ; 298(2): 101593, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35051415

RESUMO

Invasive candidiasis poses a major healthcare threat. The human opportunistic fungal pathogen Candida glabrata, which causes mucosal and deep-seated infections, is armed with distinct virulence attributes, including a family of 11 glycosylphosphatidylinositol-linked aspartyl proteases, CgYapsins. Here, we have profiled total membrane proteomes of the C. glabrata wildtype and 11 proteases-deficient strain, Cgyps1-11Δ, by mass spectrometry analysis and uncovered a novel role for fungal yapsins in glucose sensing and homeostasis. Furthermore, through label-free quantitative membrane proteome analysis, we showed differential abundance of 42% of identified membrane proteins, with electron transport chain and glycolysis proteins displaying lower and higher abundance in Cgyps1-11Δ cells, compared with wildtype cells, respectively. We also demonstrated elevated glucose uptake and upregulation of genes that code for the low-glucose sensor CgSnf3, transcriptional regulators CgMig1 and CgRgt1, and hexose transporter CgHxt2/10 in the Cgyps1-11Δ mutant. We further elucidated a potential underlying mechanism through genetic and transcript measurement analysis under low- and high-glucose conditions and found CgSNF3 deletion to rescue high glucose uptake and attenuated growth of the Cgyps1-11Δ mutant in YPD medium, thereby linking CgYapsins with regulation of the CgSnf3-dependent low-glucose sensing pathway. Last, high ethanol production, diminished mitochondrial membrane potential, and elevated susceptibility to oxidative phosphorylation inhibitors point toward increased fermentative and decreased respiratory metabolism in the Cgyps1-11Δ mutant. Altogether, our findings revealed new possible glucose metabolism-regulatory roles for putative cell surface-associated CgYapsins and advanced our understanding of fungal carbohydrate homeostasis mechanisms.


Assuntos
Ácido Aspártico Proteases , Candidíase , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Candida glabrata , Candidíase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Homeostase , Humanos
16.
Drug Chem Toxicol ; 45(6): 2843-2851, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34747284

RESUMO

Fluorouracil (5-FU) is a widely used chemotherapeutic agent in various malignant tumors. However, intestinal toxicity is considered the irritant unavoidable adverse effect during the course therapy. The aim of the current study was to screen the effect of a new selective histamine receptor 1 blocker and platelet-activating factor (PAF) blocker on 5-FU induced intestinal toxicity. Five groups (6 rats each) of adult male rats (Wistar) were arranged as follows: (1) control group that was treated with carboxymethylcellulose, (2) a group that received rupatadine (higher dose) only, (3) a group that received 5-FU and (4) and (5) groups that received 5-FU plus lower or higher dose rupatadine, respectively. At end of the experiment, we determined intestinal malondialdehyde (MDA), glutathione reduced (GSH), nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin 1ß, 6, 10 (IL-1ß, IL-6, IL-10), PAF, histamine, myeloperoxidase, cysteine-aspartic acid protease-3 (caspase-3), and nuclear factor kappa B (NF-κB) as well as the histological analysis. 5-FU injection caused marked elevation of MDA, NO, TNF-α, IL-1ß, IL-6, PAF, histamine, myeloperoxidase, caspase-3, and NF-κB expressions. The intoxicated animals showed deficient GSH and IL-10 along with significant loss of villi, disorganized crypts, and inflammatory cell infiltration. Rupatadine pretreatment reduced the previously mentioned parameters, preserved a nearly normal intestinal mucosa picture with replenished GSH and elevated IL-10. In conclusion, rupatadine is a dual histamine receptor 1, and a PAF blocker could reduce 5-FU-induced oxidative damage, inflammation, apoptosis, and ulceration of the intestinal epithelium. Rupatadine may be a valuable modality to decrease 5-FU induced intestinal mucositis.


Assuntos
Ácido Aspártico Proteases , Peroxidase , Animais , Masculino , Ratos , Apoptose , Ácido Aspártico Proteases/metabolismo , Ácido Aspártico Proteases/farmacologia , Carboximetilcelulose Sódica/metabolismo , Carboximetilcelulose Sódica/farmacologia , Caspase 3/metabolismo , Cisteína , Fluoruracila/efeitos adversos , Fluoruracila/toxicidade , Glutationa/metabolismo , Histamina/metabolismo , Histamina/farmacologia , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6 , Mucosa Intestinal/metabolismo , Irritantes , Malondialdeído/metabolismo , NF-kappa B , Óxido Nítrico/metabolismo , Permeabilidade , Peroxidase/metabolismo , Peroxidase/farmacologia , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
17.
Blood Adv ; 6(2): 429-440, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34649278

RESUMO

Multiple myeloma (MM) cells suffer from baseline proteotoxicity as the result of an imbalance between the load of misfolded proteins awaiting proteolysis and the capacity of the ubiquitin-proteasome system to degrade them. This intrinsic vulnerability is at the base of MM sensitivity to agents that perturb proteostasis, such as proteasome inhibitors (PIs), the mainstay of modern-day myeloma therapy. De novo and acquired PI resistance are important clinical limitations that adversely affect prognosis. The molecular mechanisms underpinning PI resistance are only partially understood, limiting the development of drugs that can overcome it. The transcription factor NRF1 is activated by the aspartic protease DNA damage inducible 1 homolog 2 (DDI2) upon proteasome insufficiency and governs proteasome biogenesis. In this article, we show that MM cells exhibit baseline NRF1 activation and are dependent upon DDI2 for survival. DDI2 knockout (KO) is cytotoxic for MM cells, both in vitro and in vivo. Protein structure-function studies show that DDI2 KO blocks NRF1 cleavage and nuclear translocation, causing impaired proteasome activity recovery upon irreversible proteasome inhibition and, thereby, increasing sensitivity to PIs. Add-back of wild-type, but not of catalytically dead DDI2, fully rescues these phenotypes. We propose that DDI2 is an unexplored promising molecular target in MM by disrupting the proteasome stress response and exacerbating proteotoxicity.


Assuntos
Ácido Aspártico Proteases/metabolismo , Mieloma Múltiplo , Fator 1 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma , Humanos , Fator 1 Relacionado a NF-E2/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteólise
18.
Microbiol Spectr ; 9(3): e0077921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878301

RESUMO

Phenotypic plasticity is a common strategy adopted by fungal pathogens to adapt to diverse host environments. Candida haemulonii is an emerging multidrug-resistant human pathogen that is closely related to Candida auris. Until recently, it was assumed that C. haemulonii is incapable of phenotypic switching or filamentous growth. In this study, we report the identification of three distinct phenotypes in C. haemulonii: white, pink, and filament. The white and pink phenotypes differ in cellular size, colony morphology, and coloration on phloxine B- or CuSO4-containing agar. Switching between the white and pink cell types is heritable and reversible and is referred to as "the primary switching system." The additional switch phenotype, filament, has been identified and exhibits obviously filamentous morphology when grown on glycerol-containing medium. Several unique characteristics of the filamentous phenotype suggest that switching from or to this phenotype poses as a second yeast-filament switching system. The yeast-filament switch is nonheritable and temperature-dependent. Low temperatures favor the filamentous phenotype, whereas high temperatures promote filament-yeast transition. We further demonstrated that numerous aspects of the distinct cell types differ in numerous biological aspects, including their high temperature response, specific gene expression, CuSO4 tolerance, secreted aspartyl protease (SAP) activity, and virulence. Therefore, transition among the three phenotypes could enable C. haemulonii to rapidly adapt to, survive, and thrive in certain host niches, thereby contributing to its virulence. IMPORTANCE The capacity to switch between distinct cell types, known as phenotypic switching, is a common strategy adopted by Candida species to adapt to diverse environments. Despite considerable studies on phenotypic plasticity of various Candida species, Candida haemulonii is considered to be incapable of phenotypic switching or filamentous growth. Here, we report and describe filamentation and three distinct phenotypes (white, pink, and filament) in C. haemulonii. The three cell types differ in cellular and colony appearance, gene expression profiles, CuSO4 tolerance, and virulence. C. haemulonii cells switch heritably and reversibly between white and pink cell types, which is referred to as the "primary switching system." Switching between pink and filamentous phenotypes is nonheritable and temperature-dependent, representing a second switching system. As in other Candida species, switching among distinct morphological types may provide C. haemulonii with phenotypic plasticity for rapid responses to the changing host environment, and may contribute to its virulence.


Assuntos
Adaptação Fisiológica/fisiologia , Variação Biológica da População/fisiologia , Candida/classificação , Candida/fisiologia , Fenótipo , Ácido Aspártico Proteases/metabolismo , Candida/genética , Candidíase/microbiologia , Sulfato de Cobre/farmacologia , Regulação Fúngica da Expressão Gênica/genética , Temperatura Alta , Humanos
19.
J Med Chem ; 64(10): 6706-6719, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34006103

RESUMO

Cryptococcosis is an invasive infection that accounts for 15% of AIDS-related fatalities. Still, treating cryptococcosis remains a significant challenge due to the poor availability of effective antifungal therapies and emergence of drug resistance. Interestingly, protease inhibitor components of antiretroviral therapy regimens have shown some clinical benefits in these opportunistic infections. We investigated Major aspartyl peptidase 1 (May1), a secreted Cryptococcus neoformans protease, as a possible target for the development of drugs that act against both fungal and retroviral aspartyl proteases. Here, we describe the biochemical characterization of May1, present its high-resolution X-ray structure, and provide its substrate specificity analysis. Through combinatorial screening of 11,520 compounds, we identified a potent inhibitor of May1 and HIV protease. This dual-specificity inhibitor exhibits antifungal activity in yeast culture, low cytotoxicity, and low off-target activity against host proteases and could thus serve as a lead compound for further development of May1 and HIV protease inhibitors.


Assuntos
Antifúngicos/química , Ácido Aspártico Proteases/antagonistas & inibidores , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/antagonistas & inibidores , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/efeitos dos fármacos , HIV/enzimologia , Protease de HIV/química , Protease de HIV/metabolismo , Simulação de Dinâmica Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Especificidade por Substrato
20.
Trop Biomed ; 38(1): 160-171, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33797541

RESUMO

Trichinella spiralis is an important foodborne zoonotic parasite and it is necessary to develop vaccine to prevent T. spiralis infection in food animals. T. spiralis aspartic protease-2 (TsASP2) has been demonstrated to play a crucial role in larval invasion of intestinal epithelium cells (IECs). The purpose of this study was to assess the interaction between TsASP2 and IECs and to investigate the immune protection elicited by vaccination with rTsASP2. The results showed that the enzymatic activity of native aspartic protease was detected in crude proteins of all T. spiralis development stages other than NBL stage, the highest activity was observed in the IIL stage. The results of Western blot showed that TsASP2 protein was expressed at ML, IIL and AW but not NBL, and the TsASP2 expression level at IIL stage was significantly higher than those of other three worm stages (P < 0.05). The specific binding between rTsASP2 and IECs was observed by immunofluorescence test (IFT) and confocal microscopy, and the binding site was localized at the IEC membrane and this binding ability was inhibited by aspartic protease specific inhibitor pepstain A. The results of ELISA showed that the binding ability was protein dose-dependent. Vaccination with rTsASP2 triggered a mixed Th1/Th2 humoral and mucosal immune responses, as demonstrated by the elevation levels of Th1/Th2 cytokines (IFN-γ and IL-4) secreted by the spleen and mesenteric lymph nodes (MLNs) of immunized mice. The mice vaccinated with rTsASP2 exhibited a 54.17% reduction in enteral adult worms and a 54.58% reduction in muscle larvae after T. spiralis challenge. The results demonstrated that TsASP2 might be a potential molecular target for anti-Trichinella vaccines.


Assuntos
Ácido Aspártico Proteases/metabolismo , Enterócitos/parasitologia , Proteínas de Helminto/metabolismo , Mucosa Intestinal/parasitologia , Triquinelose/parasitologia , Animais , Feminino , Imunidade Humoral , Imunidade nas Mucosas , Camundongos , Camundongos Endogâmicos BALB C , Trichinella spiralis/enzimologia , Triquinelose/imunologia , Vacinação , Vacinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...